3.9.40 \(\int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx\) [840]

3.9.40.1 Optimal result
3.9.40.2 Mathematica [C] (warning: unable to verify)
3.9.40.3 Rubi [A] (verified)
3.9.40.4 Maple [C] (verified)
3.9.40.5 Fricas [F(-1)]
3.9.40.6 Sympy [F]
3.9.40.7 Maxima [F]
3.9.40.8 Giac [F]
3.9.40.9 Mupad [F(-1)]

3.9.40.1 Optimal result

Integrand size = 25, antiderivative size = 138 \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx=\frac {2 a \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 b \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \]

output
2*a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+ 
1/2*c),2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)/d/cos(d*x+c 
)^(1/2)/(a+b*sec(d*x+c))^(1/2)+2*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d* 
x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(a/(a+b))^(1/2))*((b+a*co 
s(d*x+c))/(a+b))^(1/2)/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)
 
3.9.40.2 Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 31.60 (sec) , antiderivative size = 14885, normalized size of antiderivative = 107.86 \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx=\text {Result too large to show} \]

input
Integrate[Sqrt[a + b*Sec[c + d*x]]/Sqrt[Cos[c + d*x]],x]
 
output
Result too large to show
 
3.9.40.3 Rubi [A] (verified)

Time = 1.34 (sec) , antiderivative size = 159, normalized size of antiderivative = 1.15, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {3042, 4752, 3042, 4341, 3042, 4345, 3042, 3142, 3042, 3140, 4346, 3042, 3286, 3042, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4752

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 4341

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (b \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}}dx+a \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}}dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (a \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+b \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )\)

\(\Big \downarrow \) 4345

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (b \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {a \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {1}{\sqrt {b+a \cos (c+d x)}}dx}{\sqrt {a+b \sec (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (b \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {a \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {1}{\sqrt {b+a \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{\sqrt {a+b \sec (c+d x)}}\right )\)

\(\Big \downarrow \) 3142

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (b \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \sec (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (b \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \sec (c+d x)}}\right )\)

\(\Big \downarrow \) 3140

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (b \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}\right )\)

\(\Big \downarrow \) 4346

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {b \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {\sec (c+d x)}{\sqrt {b+a \cos (c+d x)}}dx}{\sqrt {a+b \sec (c+d x)}}+\frac {2 a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {b \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {b+a \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{\sqrt {a+b \sec (c+d x)}}+\frac {2 a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}\right )\)

\(\Big \downarrow \) 3286

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {b \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {\sec (c+d x)}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \sec (c+d x)}}+\frac {2 a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {b \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\frac {b}{a+b}+\frac {a \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \sec (c+d x)}}+\frac {2 a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}\right )\)

\(\Big \downarrow \) 3284

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}+\frac {2 b \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}\right )\)

input
Int[Sqrt[a + b*Sec[c + d*x]]/Sqrt[Cos[c + d*x]],x]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*a*Sqrt[(b + a*Cos[c + d*x])/(a + 
 b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(d*Sqrt[a + 
 b*Sec[c + d*x]]) + (2*b*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, 
(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(d*Sqrt[a + b*Sec[c + d*x] 
]))
 

3.9.40.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3286
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt 
[c + d*Sin[e + f*x]]   Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/(c + 
 d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]
 

rule 4341
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[a   Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + 
f*x]], x], x] + Simp[b/d   Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a + b*Csc[e + f* 
x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4345
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[Sqrt[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/S 
qrt[a + b*Csc[e + f*x]])   Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; FreeQ[ 
{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4346
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_. 
) + (a_)], x_Symbol] :> Simp[d*Sqrt[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x 
]]/Sqrt[a + b*Csc[e + f*x]])   Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f*x]] 
), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4752
Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Csc[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
3.9.40.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 7.01 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.78

method result size
default \(\frac {2 \left (\operatorname {EllipticF}\left (\sqrt {\frac {a -b}{a +b}}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right ) a -\operatorname {EllipticF}\left (\sqrt {\frac {a -b}{a +b}}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right ) b +2 \operatorname {EllipticPi}\left (\sqrt {\frac {a -b}{a +b}}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), \frac {a +b}{a -b}, \frac {i}{\sqrt {\frac {a -b}{a +b}}}\right ) b \right ) \sqrt {a +b \sec \left (d x +c \right )}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \sqrt {\cos \left (d x +c \right )}}{d \sqrt {\frac {a -b}{a +b}}\, \left (b +a \cos \left (d x +c \right )\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}}\) \(245\)

input
int((a+b*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 
output
2/d/((a-b)/(a+b))^(1/2)*(EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d* 
x+c)),(-(a+b)/(a-b))^(1/2))*a-EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+c 
sc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b+2*EllipticPi(((a-b)/(a+b))^(1/2)*(-cot( 
d*x+c)+csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*b)*(a+b*sec(d*x+c))^ 
(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)^(1/2)/(b+ 
a*cos(d*x+c))/(1/(cos(d*x+c)+1))^(1/2)
 
3.9.40.5 Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx=\text {Timed out} \]

input
integrate((a+b*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="fricas")
 
output
Timed out
 
3.9.40.6 Sympy [F]

\[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx=\int \frac {\sqrt {a + b \sec {\left (c + d x \right )}}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx \]

input
integrate((a+b*sec(d*x+c))**(1/2)/cos(d*x+c)**(1/2),x)
 
output
Integral(sqrt(a + b*sec(c + d*x))/sqrt(cos(c + d*x)), x)
 
3.9.40.7 Maxima [F]

\[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {\sqrt {b \sec \left (d x + c\right ) + a}}{\sqrt {\cos \left (d x + c\right )}} \,d x } \]

input
integrate((a+b*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="maxima")
 
output
integrate(sqrt(b*sec(d*x + c) + a)/sqrt(cos(d*x + c)), x)
 
3.9.40.8 Giac [F]

\[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {\sqrt {b \sec \left (d x + c\right ) + a}}{\sqrt {\cos \left (d x + c\right )}} \,d x } \]

input
integrate((a+b*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="giac")
 
output
integrate(sqrt(b*sec(d*x + c) + a)/sqrt(cos(d*x + c)), x)
 
3.9.40.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx=\int \frac {\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}}{\sqrt {\cos \left (c+d\,x\right )}} \,d x \]

input
int((a + b/cos(c + d*x))^(1/2)/cos(c + d*x)^(1/2),x)
 
output
int((a + b/cos(c + d*x))^(1/2)/cos(c + d*x)^(1/2), x)